SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WAKA:ref ;pers:(Inganäs Olle);lar1:(kau)"

Sökning: WAKA:ref > Inganäs Olle > Karlstads universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björström, Cecilia M., et al. (författare)
  • Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene:PCBM photovoltaic devices
  • 2006
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - Cardiff : SPIE - International Society for Optical Engineering. - 0277-786X .- 1996-756X. ; 6192, s. 61921X-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase separate during film formation. Tuning the morphology of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solutions before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphology of thin films of the blend. The lateral morphology is imaged by atomic force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evaporation of a highly volatile solvent. With addition of the low-vapour pressure solvent chlorobenzene, a more homogeneous vertical composition is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform:chlorobenzene mixtures with a volume-ratio of 80:1. We have also investigated the role of the substrate on the morphology. We found that blend films spin-coated from chloroform solutions on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase separation in a region close to the substrate interface
  •  
2.
  • Fan, Qunping, 1989, et al. (författare)
  • Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation
  • 2020
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 13:12, s. 5017-5027
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) has been a major challenge for efficient all-polymer solar cells (all-PSCs). Herein, we developed a polymer acceptor PF5-Y5 with excellent optical absorption capability (onset extending to similar to 880 nm and maximum absorption coefficient exceeding 105 cm(-1) in a film), high electron mobility (3.18 x 10(3) cm(2) V-1 s(-1)) and high LUMO level (-3.84 eV) to address such a challenge. As a result, the PBDB-T:PF5-Y5-based all-PSCs achieved a high power conversion efficiency of up to 14.45% with both a high Voc (0.946 V) and a high Jsc (20.65 mA cm(-2)), due to the high and broad absorption coverage, small energy loss (0.57 eV) and efficient charge separation and transport in the device, which are among the best values in the all-PSC field. In addition, the all-PSC shows a similar to 15% improvement in PCE compared to its counterpart small molecule acceptor (Y5)-based device. Our results suggest that PF5-Y5 is a very promising polymer acceptor candidate for applications in efficient all-PSCs.
  •  
3.
  • George, Zandra, 1985, et al. (författare)
  • Two-in-one : Cathode modification and improved solar cell blend stability through addition of modified fullerenes
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:7, s. 2663-2669
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of dual purpose modified fullerenes with pyridine-as well as amine-functional groups is reported. Addition of these fullerenes to a polymer : fullerene bulk-heterojunction blend based on a thiophene-quinoxaline donor polymer is found to modify the active layer/cathode interface of inverted solar cells (glass/ITO/active layer/MoO3/Al). In particular the open-circuit voltage of devices is increased from 0.1 V to about 0.7 V, which results in a drastic rise in photovoltaic performance with a power conversion efficiency of up to 3%. At the same time, presence of the functionalised fullerene additives prevents the detrimental formation of micrometre-sized fullerene crystals upon annealing at 140 degrees C. As a result, the device performance is retained, which promises significantly increased thermal stability of the bulk-heterojunction blend nanostructure.
  •  
4.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells
  • 2022
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185 .- 1948-7185. ; 13:50, s. 11696-11702
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-Chloronaphthalene (CN) has been a common solvent additive in both fullerene- A nd nonfullerene-based organic solar cells. In spite of this, its working mechanism is seldom investigated, in particular, during the drying process of bulk heterojunctions composed of a donor:acceptor mixture. In this work, the role of CN in all-polymer solar cells is investigated by in situ spectroscopies and ex situ characterization of blade-coated PBDB-T:PF5-Y5 blends. Our results suggest that the added CN promotes self-aggregation of polymer donor PBDB-T during the drying process of the blend film, resulting in enhanced crystallinity and hole mobility, which contribute to the increased fill factor and improved performance of PBDB-T:PF5-Y5 solar cells. Besides, the nonradiative energy loss of the corresponding device is also reduced by the addition of CN, corresponding to a slightly increased open-circuit voltage. Overall, our observations deepen our understanding of the drying dynamics, which may guide further development of all-polymer solar cells.
  •  
5.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends
  • 2021
  • Ingår i: Small Methods. - : John Wiley & Sons. - 2366-9608. ; 5:10, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.
  •  
6.
  • Müller, Christian, et al. (författare)
  • Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends : thermal stability and miscibility
  • 2011
  • Ingår i: Journal of Materials Chemistry. - : RSC Publishing. - 0959-9428 .- 1364-5501. ; 21, s. 10676-10684
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal behaviour of an organic photovoltaic (OPV) binary system comprised of a liquidcrystalline fluorene-based polymer and a fullerene derivative is investigated. We employ variabletemperature ellipsometry complemented by photo- and electroluminescence spectroscopy as well as optical microscopy and scanning force nanoscopy to explore phase transitions of blend thin films. The high glass transition temperature correlates with the good thermal stability of solar cells based on these materials. Furthermore, we observe partial miscibility of the donor and acceptor together with the tendency of excess fullerene derivative to segregate into exceedingly large domains. Thus, for charge generation less adequate bulk-heterojunction nanostructures are poised to develop if this mixture is exposed to more elevated temperatures. Gratifyingly, the solubility of the fullerene derivative in the polymer phase is found to decrease if a higher molecular-weight polymer fraction is employed, which offers routes towards improving the photovoltaic performance of non-crystalline OPV blends.
  •  
7.
  • Shi, Juanzi, et al. (författare)
  • Photo-Oxidation Reveals H-Aggregates Hidden in Spin-Cast-Conjugated Polymer Films as Observed by Two-Dimensional Polarization Imaging
  • 2019
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 31:21, s. 8927-8936
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-cast intermolecular interactions in conjugated polymer films lead to the formation of excited states delocalized over a few oriented and tightly packed conjugated segments. The optoelectronic properties of conjugated polymers are strongly dependent on the presence of such oriented domains at a nanoscale level. We observe oriented domains as large as several micrometers in size spontaneously formed in spin-cast PBDT-TPD films. Two-dimensional polarization imaging of fresh and photodegraded films showed a much higher visibility of the oriented domains in the degraded samples. We propose that the film is a mixture of two phases with different degrees of chain alignment. The photoluminescence of the more anisotropic phase is more stable against photodegradation in comparison with the less anisotropic phase. Photodegradation predominately quenches photoluminescence of the less anisotropic phase making the oriented domains more visible in the polarization contrasts. Spectral and energy transfer properties of the more oriented phase allowed us to assign it to weakly coupled H-aggregates with the suppressed 0-0 vibronic transition. Stable photoluminescence of H-aggregates in comparison with that of nonaggregated (less oriented) chains may help to understand degradation mechanisms of polymer devices and shows the role of energy transfer in this process. Selective degradation-induced quenching can reveal hidden inhomogeneity of conjugated polymer films.
  •  
8.
  • Svanstrom, C. M. B., et al. (författare)
  • Device Performance of APFO-3/PCBM Solar Cells with Controlled Morphology
  • 2009
  • Ingår i: Advanced Materials. - Weinheim : Wiley. - 0935-9648 .- 1521-4095. ; 21:43, s. 4398-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer/fullerene solar cells with three different device structures: A) diffuse bilayer, B) spontaneously formed multilayer and C) vertically homogeneous thin films, are fabricated. The photocurrent/voltage performance is compared and it is found that the self-stratified structure (B) yields the highest energy conversion efficiency.
  •  
9.
  • Wang, Yuming, et al. (författare)
  • Light-induced degradation of fullerenes in organic solar cells : a case study on TQ1:PC71BM
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 6:25, s. 11884-11889
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of organic solar cells (OSCs) is critical for practical applications of this emerging technology. Unfortunately, in spite of intensive investigations, the degradation mechanisms in OSCs have not been clearly understood yet. In this report, we employ a range of spectroscopic and transport measurements, coupled with drift-diffusion modelling, to investigate the light-induced degradation mechanisms of fullerene-based OSCs. We find that trap states formed in the fullerene phase under illumination play a critical role in the degradation of the open-circuit voltage (V-OC) in OSCs. Our results indicate that the degradation is intrinsic to the fullerenes in OSCs and that alternative acceptor materials are desired for the development of stable OSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy